Multi-Class, Multi-Movement Vehicle Counting on Traffic Camera Data

Vineet Shenoy, Pirazh Khorramshahi, and Rama Chellappa
Johns Hopkins University

{vshenoy4, pkhorral, rchella}@jhu.edu

Abstract

Multi-Class, multi-movement vehicle counting is essen-
tial for determining turning behavior in city-scale intel-
ligent transportation. Understanding traffic patterns and
vehicle actions is critical to proper timing of signals for
congestion mitigation and usage along certain corridors.
This paper presents an end-to-end pipeline for real-time
multi-class, multi-movement vehicle counting. We match
the tracking results from off-the-shelf trackers to movements
represented as parametric curves, outputting results in an
online fashion. Our novel contribution is the definition of
vehicle actions and the projection of vehicle trajectories
in image space onto potential actions. The code can be
found at https://github.com/vineetrshenoy/|
VehicleCounting2021

1. Introduction

In recent years, the proliferation of traffic cameras has
produced a constant stream of vehicle-related data that can
be used for intelligent transportation systems. This data
can be used for tasks such as speed estimation, dynamic
traffic routing, multi-camera tracking, and traffic anomaly
detection. In addition, with the recent advances of Deep
Convolutional Neural Networks (DCNNs) [5[], significant
improvements in classification, detection, and tracking
have led to corresponding improvements in traffic analytics.

Given raw traffic camera videos and metadata describing
potential vehicle actions, multi-class multi-movement
vehicle counting seeks to detect, classify, track, and
assign vehicles to pre-defined movements as they exit a
scene. Potential actions can include passing through an
intersection, making right or left turns, and U-turns; finding
robust mathematical representations of these actions is
critical. Accurate matching involves handling uncertainty
and unusual patterns such as extended stopping at signals
and occlusions and re-appearances in a scene. It also
includes maintaining performance under adverse lighting

and weather conditions such as rain and snow. The Al
City Challenge dataset [8]] provides this challenging data
through video feeds captured at twenty different intersec-
tion and highway scenes. This dataset only provides raw
video and the description of potential movements at each
scene — detection, tracking, and and counting must be
independently defined.

We propose an algorithm that efficiently classifies move-
ments and vehicles on this dataset. Our contributions in-
clude:

e Creating an end-to-end pipeline that ingests raw video
and classifies various movements via a trajectory
matching module.

e Novel representations of a vehicle movements (i.e.
“left-turn™, “right-turn™) using parametric curves in
image space.

e Simple and fast matching algorithms that associate the
trajectory of a vehicle with a movement.

We build this pipeline in three stages — a detection stage,
a tracking stage, and a counting/matching stage.

The rest of the paper is organized as follows: Section
[2) discusses related works for vehicle counting. Section [3]
discusses our representation for vehicles movements. Sec-
tion ] discusses the algorithm and experiments. Finally, we
conclude in Section[3and discuss future work.

2. Related Works

Successfully matching vehicles to movements requires
detection, tracking, and matching modules. Previous works
in this area are described below.

Detection: Detection is a critical first step for most
algorithms. The AI City evaluation metric, described in
section ] measures run-time performance of algorithms, so
previous works [1f], [3] chose the YOLOv3 detector [10].
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Though the YOLOV3 detector does not achieve the state-
of-the-art mAP scores on datasets like MSCOCO [6], it
trades accuracy for speed as it is a one-stage detector (i.e.
does not use region proposals and detects objects in a
single pass). Other detectors, such as [7] [9] used two-stage
networks like Faster R-CNN [[12]. These networks act in
two stages: in the first stage, feature maps are passed to
a Region Proposal Network which identifies and crops
feature maps where potential objects may be located, and
in the second stage classification and bounding box regres-
sion occurs. The Feature Pyramid Network incorporated
into Faster-RCNN combines feature maps from different
backbone levels for better localization at a various scales.

Tracking: Another fundamental task is tracking; this is
critical for correct and robust matching. Many works such
as [1f], [3]] used Deep Simple and Online Realtime Tracking
(Deep SORT) [15], which integrates both appearance and
motion information, as opposed to SORT [2], which only
uses motion information. Both algorithms use bounding
box information from previous video frames to estimate the
motion of objects in the scene; Deep SORT also considers
feature descriptors of objects across frames to associate
global IDs to unique vehicles, and uses the cosine distance
to match the feature descriptors for each vehicle. While
appearance information may improve the accuracy of the
tracker, it does pay a penalty in terms of speed.

Both trackers described above are considered to be
“two-stage” trackers i.e. detections from a previous stage
are associated to track objects globally. Other work such
as [13]] [17] create one-stage trackers which perform
detection and tracking simulataneously. Note that these
trackers require additional training, which is outside of the
prescribed rules for the Al City Challenge.

Another major problem in tracking is identity switching,
which occurs when a single vehicle is given two different
object identities. Accounting for the variety of ID switches
when occluded, the authors in [7]] improve their detections
with a re-match and a single object tracking strategy.

Matching: Previous works such as [1]] [4] used the concept
of “entry polygons” to classify movements. After detection
and tracking, a vehicle entering the movement’s “entry
polygon” was classified as that movement. If a vehicle was
tracked but for some reason did not enter the movement
polygon, then a movement-based k-NN classifier would
assign a movement to that vehicle. Similarly, [3|] used
the notion of “distinguished regions” pairs, two linked
regions for each movement, to reduce identity switches and
occlusions that frequently result in erroneous movements.
As opposed to using polygons, [9] used “line crossings”

which classified movements as vehicles crossed starting
and ending lines. Using a vector from the center of the
first and last tracked boxes, the authors in [9] obtain
intersection and orientation information that contributes to
their matching algorithm.

Several previous works have used trajectory-based meth-
ods. The authors in [7]] used computed and manually drawn
trajectories as ground-truth movements, and then matched
the vehicle tracklets to trajectories. As a major addition,
they modified the SORT matching algorithm’s distance met-
ric, the Mahanoblis distance, to account for the non-linear
motion by adding an identity matrix to the covariance term.
During the counting stage they considered the vehicle track
as points in space and use the Hausdorff distance to match
the points to a trajectory.

3. Approach

In this section we present our proposed approach,
Parametric Curve Tracking (PACT), for Multi-Class,
Multi-Movement Vehicle Counting. The pipeline consists
of three modules: detection, tracking, and counting mod-
ules.

3.1. Detection

A requirement of the 2021 NVIDIA AICITY challenge
was to use no external datasets to improve detectors. There-
fore, we used off-the-shelf detectors trained on the MS
COCO [6] dataset, specifically Faster-RCNN [[11]]. This de-
tector is a two-stage detector, which generates regions of
interest from feature maps using a Region Proposal Net-
work, and then sends these regions downstream for classi-
fication and bounding box regression. We obtain detections
per-frame, and retain only those that belong to the classes
of “car”, “bus”, and “truck”.

3.2. Tracking

All detections for a single video stream are input to the
tracking algorithm; we use SORT [14]. Assuming a con-
stant velocity model, a Kalman Filter handles the motion
prediction, while the Hungarian Algorithm handles the data
association problem. Successful tracking outputs a series of
bounding boxes for each frame of the video along with a ve-
hicle identifier consistent for all frames in which the vehicle
appears. We compare SORT to the Jointly learned Detec-
tor and Embedding (JDE) tracker in [[13]], which uses visual
features and a deep association metric along with motion in-
formation to track vehicles. The results from both trackers
are presented in Table[T]

3.3. Counting

We propose a novel counting method using parametric
curves. As compared to methods such as [1]] [3] [4] which
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Figure 1. The pipeline for multi-class, multi-movement vehicle counting

only account for a vehicle’s starting and ending location,
we can estimate a vehicle’s entire trajectory and encode a
notion of direction.

3.3.1 Movement Definition

The first step is to mathematically define a certain move-
ment, such as a “left turn” or a “right turn”. To do this,
we use Bézier curves. Give points P1,P», ... P, a Bézier
curve is defined by the polynomial

n
B(t)=)_ (n> 1-t)" P, 0<t<1 (1)
im1 \!

The curve begins and ends at point P; and Py, respectively,
while points P, ... P,,_7 serve as “control” points, deter-
mining any “change of direction” of the curve. For instance,
a first-order Bézier curve (a line) has no change in direc-
tion, a second-order curve has one change of direction, and
a third-order curve has two changes of direction. For the
matching module, only a first order curve

Cit)y=(1—t)- P+t P 2)
and a second order curve
Cty=(1—t)*-Pi4+2-(1—t)-t-Po+t*-P3 (3)

for 0 <t < 1, are used. First-order curves are used for any
“straight through” movement, while second-order curves
are used for turns. After choosing point P; appropriately in
image coordinates, we can closely match the trajectory of
movements, described as metadata in the dataset, as shown

in Figure

3.3.2 Movement Matching

The goal of matching is to find the parametric curve that
closely resembles the trajectory of a vehicle. For each

Figure 2. Parametric movement curves (blue) overlayed on cam-
era scene and pre-defined movement curves and number (red). The
green polygon is the region of interests and signals when a vehi-
cle should be counted (upon exit). Movement 3 uses a first-order
curve while movement 1,2, and 4 use second-order curves

bounding box center (x;,y;)fori = 1...n from the
tracker, where n is the number of frames in which the
vehicle is tracked, the closest point ¢; to Bézier curve
J, C;(t;) Vj can be found, and a distance d; from the
tracker to a point on the curve is obtained; summing d;
over each curve j results in a cumulative distance from the
trajectory to the curve. The curve which has the smallest
cumulative distance to the tracker points can be assigned.
The full algorithm is defined in Algorithm [T} and a visual
representation is in Figure 3] We describe below how to
find the closest points from the tracked vehicles to the curve
for first and second order curves.

First-Order Curve: Both the tracker output, a set of
bounding box centers (x;,y;) for i = 1...n per unique ve-
hicle, and the curve itself can be viewed as a series of
vectors; the vector on curve C;(t;) = (x;,y;) at time ¢
is the tangential direction of the curve at point ;. Us-
ing an orthogonality argument, the point ¢; ; closest to the



curve C(t;) from the tracked vehicle vector (z;,y;) is that
point for which the distance vector is orthogonal to the
direction of the curve. Letting (Z1,%1) (Z2,72) be our
curve points, and re-writing equation [2] in vector notation
as Cj(t;) = (o1 +ti - (T2 — T1), 00 + ti - (2 — 71)), we
solve

(Z1+ti- (T2—T1), 51 +ti - (G2 — G1))+
(@1 =)+t (T2 —T1), (1 —ys) + i (Y2 —31)) =0
)

The first term in the dot product is the tangent vector of
the curve. The second term is the offset vector from the
point to the curve. See figure |3|for a visual understanding
of the algorithm. This can easily be solved for ¢; in the
first-order case as

—1- (&1 =) (T2 —71) + (11 —¥i) - (2 — 71))
(T2 — 21)% + (Y2 — 41)?

t =
4)

Second Order Curve: The second order case pro-
ceeds similarly; given that we have curve and control points
(@1,91), (%2, 92), (€3, 73), we find the dot product of the
tangential vector (pink arrows in figure |2)) and the vector
from the point (x;, y;) to the curve. After algebraic manip-
ulation, we solve a third-order polynomial 0 = at? + bt? +
ct; + d and ignore roots that are out of the range [0, 1] and
select the root which results in the shortest distance vector
to (x;, y;). We find that the our coefficients are

a = (T3 + 473 + T3 — AT, %9 + 27173 — AT2T3)+
(U3 + 495 + U5 — 45172 + 20173 — 49203
b= (3% — 622 + 9Z1%y — 3173 + 3ToT3)+
(=357 — 673 + 9172 — 37173 + 37273)
c = (322 4272 — 671 Ty + T1 T3 — T4T1 + 22 To — T;T3)+
(397 + 295 — 65192 + U173 — i1 + 2vi¥2 — Vi3)
d = (~TI+T1 Ta 2o —2:T2)+(— U +01 02 +Yi01 — i)

(6)

Note that only coefficient ¢ and d depend on the the
tracked vehicle’s coordinates (x;,y;). Solving this cubic
equation can be done using any off-the-shelf solver.

The above procedure is performed for all curves C;(t),
and for each curve, a vector t; and d; corresponding to the
points on the curve and shortest distance to each point is
obtained. The distance vector with the smallest cumulative
sum corresponds to the movement. See algorithm [] for a
pseudo-code implementation.

Algorithm 1: Vehicle Movement Matching
Result: Movement ID
Input:

e N Tracker Locations, labeled (z;,y;),i = 1... N for
vehicle k.

e Control Points for Curves C}

foreach Curve C; do
t; < Closest point t; on C; to (2, ys),
aggregated;
d; < Distance d; from C; to (z;,v;),
aggregated;
if t; decreasing then
| "d; < MAXINT;
end

end
mvt-id = argmind;

Figure 3. Visualization of the matching algorithm. The gray curve
is the Bézier curve for a certain movement. For the for each point
from the tracker (red), the closest point on the curve is found, as
well as the corresponding distance from the point to the curve. The
purple arrows are vectors show the direction of the curve at each
point.

3.4. Post-Processing

The majority of movements can be classified based
solely by choosing the movement with the smallest cumu-
lative distance. However, the associated vector t provides
valuable information that can be used for matching as
well. Firstly, all values of ¢; in t must be between zero
and one; a large proportion out of this range signifies an
incorrect match to that movement. Secondly, elements of t
must be increasing, usually monotonically. Checking this
condition can be especially important for parallel paths in
which a vehicle’s trajectory may be closer to an incorrect
movement (due to jittering of the tracker or imprecise curve
definition). Consider movements 1 and 2 in figure[2] and a
vehicle’s tracked trajectory that corresponds to movement
2 (ground truth). Due to noise in the tracker, the aggregated



distance may be smaller for movement 1 versus movement
2; however, t will clearly be decreasing from one to zero for
movement 1 and increasing from zero to one for movement
2, unambiguously classifying this movement correctly.
Clearly, t encodes a notion of direction. Other behavior
corresponding to incorrect movements was observed; for
example, elements of the t vector increased to a certain
point, then only decreased. This helps eliminate unlikely
paths.

Analysis of the t vector can provide insights beyond the
scope of the challenge; for example, an approximate speed
can be determined by differentiating the vector with respect
to time. Displacement can also be measured. Stationary
or stopped vehicles can also be identified by viewing the
highly oscillatory behavior of the t vector, which has ap-
plications in anomaly detection. When designing curves on
roads, civil engineers can use this information to understand
how closely vehicles “hug” the intended trajectories. En-
try/exit region-based methods provide no such information.

4. Experiments and Results
4.1. Dataset

One dataset for this problem has been developed as part
of the AICITY 2021 workshop [8]. The vehicle counting
dataset consists of twenty different camera views from traf-
fic cameras in Iowa, with varying lighting conditions (i.e.
dawn, mid-day, etc), as well as different weather conditions
(i.e. rain and snow). The majority of scenes focus on inter-
sections, with a limited number of highway scenes for cap-
turing on-ramp and off-ramp movements. The number of
movements to classify per-scene varied from as little as two
different movements to as many as twelve different move-
ments for a busy intersection. The movement themselves
included “right turn”, “left turn”, “no turn”, “highway on-
ramp”, and “highway off-ramp”. Vehicle classification was
split into two classes — “car” which was assigned to many
smaller vehicles such as cars, minivans, pick-up trucks and
mail trucks, and “trucks”, which encompassed 18-wheelers,
garbage trucks, and many other large vehicles. A region-
of-interest (ROI) was also defined to indicate when teams
should start and stop tracking of vehicles. A total of nine
hours of video was captured at a resolution of 960 pixels or
better and the majority of videos were captured at 10 frames
per-second. As a part of the challenge, algorithms were
evaluated for both “effectiveness” and efficiency; seventy-
percent of the score was attributed to “effectiveness” while
thirty percent of the total score was obtained from the speed
of the algorithm.

Tracker Type ‘ S1 ‘ Sleffcctiveness ‘ S]-efficiency
SORT [14] 0.5350 0.7553 0.0209
JDE Tracker [[13] | 0.4155 0.5683 0.0591

Table 1. The results on the Al City Challenge

4.2. Evaluation Criteria

The algorithms were evaluated for both perfor-
mance/accuracy as well as the run-time. A combined S1
score was obtained a the sum of the performance score and
efficiency scores:

S1= aSlefficiency + 6516ffectiveness (7)

where o = 0.3 and 3 = 0.7. The Sl¢f ficiency Score was
governed by the the execution time (in seconds) and the effi-
ciency base factor, a number encapsulating the performance
characteristics of the system:

time X base_factor

S]-efficiency = max((), 1 ) (8)

1.1 x video_total_time
The effectiveness score was computed as the weighted

average of a normalized weighted root mean square error
(nwRMSE):

k
wRMSE = | > wi(#; — ;) )
i=1
where w; = % Teams were scored based on the S1
score only.
4.3. Result

We report our scores in Table We used the Faster-
RCNN detector [16]] as for all experiments but varied the
tracker. The first tracker was SORT [14] and the second
tracker was the JDE Tracker (appearance matching portion
only) [13].

We found that the appearance descriptor used in [13]]
suffered greatly from ID switching. In the counting algo-
rithms, this usually resulted in double counting vehicles or
not counting vehicles at all due to many broken trajecto-
ries. The SORT algorithm was more consistent in this sce-
nario, which resulted in better performance. Using tech-
niques from [7] for more robust trajectory matching is a po-
tential step to further improve performance.

5. Conclusion

In this paper, we have proposed an end-to-end pipeline
that ingests raw video, detects vehicles of different classes,



tracks each unique video through the video frames, and as-
signs a movement to the tracked vehicle. We tested our im-
plementation on the 2021 AI City Challenge [8]] and pre-
sented the results. Our novel contribution involves defin-
ing vehicle movements using Bézier and matching a vehi-
cle’s trajectory to that of the curve. In addition, our algo-
rithm quantifies a notion of direction that can unambigu-
ously classify movements in the presence of noise. This
work also sets the foundation for work in related tasks, such
as vehicle speed estimation and anomaly detection. Future
work would include improving the tracking results by lim-
iting ID switching and stitching broken trajectories.
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