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Abstract—Multi-camera vehicle tracking is one of the most
complicated tasks in Computer Vision as it involves distinct tasks
including Vehicle Detection, Tracking, and Re-identification. De-
spite the challenges, multi-camera vehicle tracking has immense
potential in transportation applications including speed, volume,
origin-destination (O-D), and routing data generation. Several
recent works have addressed the multi-camera tracking problem.
However, most of the effort has gone towards improving accuracy
on high-quality benchmark datasets while disregarding lower
camera resolutions, compression artifacts and the overwhelming
amount of computational power and time needed to carry out
this task on its edge and thus making it prohibitive for large-
scale and real-time deployment. Therefore, in this work we
shed light on practical issues that should be addressed for the
design of a multi-camera tracking system to provide actionable
and timely insights. Moreover, we propose a real-time city-scale
multi-camera vehicle tracking system that compares favorably
to computationally intensive alternatives and handles real-world,
low-resolution CCTV instead of idealized and curated video
streams. To show its effectiveness, in addition to integration
into the Regional Integrated Transportation Information (RITIS)
system1, we participated in the 2021 NVIDIA AI City multi-
camera tracking challenge and our method is ranked among the
top five performers on the public leaderboard.

Index Terms—Vehicle Detection, Re-Identification, Single
Camera Tracking, Multi Camera Tracking, Domain Adaptation,
Real-Time, Scalable.

I. INTRODUCTION

Multi-Camera Tracking (MCT) is the task of tracking an
unknown number of objects across a number of mounted
cameras that may or may not have overlap in their fields-
of-view. This makes MCT to be one of the most complicated
tasks in Computer Vision as it involves several fundamental
vision tasks, namely Object Detection, Tracking, and Re-
identification. Due to recent advancements in Computer Vi-
sion, thanks to Deep Learning and Deep Convolutional Neural
Networks (DCNN) in particular, interests in high performance
MCT systems have been rapidly growing. The underlying
reason for this rapid growth is that MCT has great applications
in intelligent transportation systems.

Transportation operations have historically relied on rela-
tively expensive and hard to maintain Bluetooth and Wi-Fi
re-identification sensors for understanding the flow, routing,
and origins and destinations (O-D) of traffic throughout urban

1https://www.ritis.org

environments. While agencies are now able to purchase O-D
datasets from location-based services companies, the penetra-
tion rates are still relatively low, latency is high, and proposed
legislative actions and new cell phone privacy policies may
threaten the proliferation of this form of data collection.
However, nearly every major city has a traffic operations
program that has deployed hundreds or even thousands of
CCTV cameras. These cameras, when equipped with MCT,
could prove to be a new, higher quality source of real-time and
archived O-D and routing data for the transportation planning
and operations community. Furthermore, MCT could also
support other real-time safety applications related to wrong-
way driving detection, event detection, and other erratic and
unsafe driving behavior which contribute to increased safety
and security.

In this paper, we focus on developing an MCT system tai-
lored for vehicles that can operate in real-time. As mentioned
above, the MCT system involves three distinct vision tasks.
1- Vehicle Detection: Detection is responsible for localizing
vehicles of various types at different locations and scales
within the camera view. High quality detections are critical to
the success of the MCT system as it impacts the performance
of all the downstream modules. 2- Single Camera Vehicle
Tracking: Upon receiving detections, a multi-object tracker
attempts to associate the detected bounding boxes belonging
to individual identities simultaneously and predict their future
locations while being robust to occlusion and variations in
velocity of vehicles. Note that there are methods to perform
multi-object detection and tracking via a single model [1], [2].
However in our work we find that having separate modules
for the two tasks helps us to identify potential issues and
optimize each to the MCT task. 3- Vehicle Re-identification:
Re-identification aims to obtain discriminative appearance em-
beddings from the tracked vehicles in each camera so that we
can associate different single camera tracks corresponding to
individual identities. The extracted visual embeddings should
be robust to variations in orientation and lighting conditions
that may be different from camera to camera. Once single
camera tracks and their corresponding representations have
been computed for all the cameras, a clustering algorithm is
needed to associate single camera tracks to unique identities
based on the computed visual features and spatio-temporal in-
formation that comes naturally with each single camera track.
Since the number of true identities is not known beforehand,
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the clustering algorithm should be independent of the number
of vehicle identities to perform this task.

There have been several works that address MCT for
vehicles [3]–[6]. However, all these works only attempt to
maximize the multi-camera tracking accuracy on benchmark
datasets without any consideration for the inference time and
computational complexity. As a result, they require significant
amount of computation time and resources to process a number
of videos with the duration of only few minutes. In contrast,
in this work, we present an MCT system that can run in real-
time and provide timely results for any downstream goals.
To demonstrate the effectiveness of our method, we integrate
our MCT system, as a prototype, in the RITIS system which
is a data-driven platform from the University of Maryland
for transportation analysis, monitoring, and data visualization.
RITIS has access to the real-time traffic camera feeds that
are provided by state and local departments of transportation
traffic centers to the University of Maryland via electronic
data feeds from traffic management centers. Our MCT system
provides real-time multi-camera capability which is useful
for a variety of transportation applications. In addition, we
evaluated our system on the 2021 NVIDIA AI City Multi-
Camera Vehicle Tracking challenge and were ranked among
the top five competitors.

The rest of the paper is organized as follows. In section
II, we review recent works on object detection, multi-object
tracking, and vehicle re-identification. The detailed architec-
ture of our multi-camera tracking pipeline is discussed in
section III. Next, in section IV, we discuss the implementation
details, validation data and its statistics, and evaluate our
approach on real-time traffic data as well the Multi-Camera
Vehicle Tracking challenge of the 2021 AI City challenge to
demonstrate its effectiveness and validate our design choices.
Finally we conclude in section V.

II. RELATED WORK

Here we review most relevant works on vehicle detection,
tracking, and re-identification as these are the pillars of the
multi-camera vehicle tracking task.

Object Detection: Yolo [7] and it variants [8]–[10], Single
Shot [11], RetinaNet [12], Faster R-CNN [13] and Mask
R-CNN [14] are popular choices of object detectors to be
employed in variety of applications. Many previous works
use these models as off-the-shelf detectors trained on the
large-scale object detection COCO dataset [15]. Moreover,
RetinaNet, Faster R-CNN and Mask R-CNN are particularly
popular as they are regularly maintained by Detectron li-
brary [16] which significantly facilitates their adoption by re-
searchers. More recently, EfficientDet [17] that has a weighted
bi-directional feature pyramid network to allow for easy and
fast multi-scale feature fusion has been developed. Many
works fine-tune these detectors on external vehicle data such
as the UA-DETRAC [18] dataset. One extension of this work
is SpotNet [19] which uses attention mechanisms to locate
roads and driving surfaces, and limiting detections to these
surfaces. Similarly, the authors in [20] propose FG-BR Net
which focuses on objects in the foreground. In the first of

this two-stage method, high quality regions of interest (RoI)
proposal are fed to the detector by suppressing background
features while amplifying feature activations in foreground
objects. The second stage, assuming that there are errors in
the first stage, refines the first stage proposals with pairwise
non-weighted local background fusions. Some methods from
face detection have found their way into vehicle detection. The
authors in [21] first use a region proposal network to extract
RoI proposals, which is followed by an adaptively-generated
Gaussian kernel which extracts local features. The output of
this stage is fed to an LSTM [22] module to encode global
context, and subsequently to a classifier and bounding box
regression module. Concepts tested on pedestrian-detection
datasets have also found their way into vehicle detections,
with the authors in [23] proposing a convolutional neural
network that predicts centers and scales of bounding boxes.
This method obviates the need for anchor boxes and avoids
computationally-heavy post processing steps usually involved
with key-point pairing-based detectors.

Multi-Target Single Camera Tracking: Most tracking
methods first detect and then associate objects. The local
methods [24]–[26] consider only two frames at a time, but
do not perform well when occlusion, pose variations, and
camera motion are present. In contrast global methods con-
sider multiple frames concurrently and solve network flow
problems [27]–[29]. One of the more recent trackers is the
Deep Affinity Model [30], which performs detection and data
association concurrently. As input, two frames of a video (not
necessarily consecutive) are fed through two networks with
shared parameters and object features are extracted.Another
recent local method is CenterTrack [1], which represents
all objects as a point at the center of a bounding box. To
associate detections across frames, the distance between the
object center in the previous frame and the predicted offset
in the current frame is calculated. A new object identifier is
created when there is no previous object center within a certain
radius of the current object center. Similar to CenterTrack, [2]
associates detections across frames through an offset under
the assumption that motion between frames is small; the
authors regress the bounding box location from the previous
frame to the current frame using the regression head of a
Faster R-CNN detector [13] and the deep features in the
current frame. If the predicted bounding box after regression
has a high Intersection-over-Union (IoU) with an incoming
bounding box, then the track has been estimated successfully.
However we found these end-to-end models to be burdensome
to modify and adapt to new data domains in addition of
being computationally expensive for a multi-camera tracking
system. A successful example of an online tracking model
which relies on pre-computed detections, is SORT [31] and its
enhanced version with deep associations, namely DeepSORT
[32]. These trackers benefit from a linear state-space model
that approximates dynamics of targets and are suitable choices
for real-time applications.

Vehicle Re-Identification: Most of the recent successful
works in vehicle re-identification have benefited from at-
tention models to compute robust representations [33]–[40]
for distinguishing vehicle identities and extracting minute
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Fig. 1: Multi-Camera Vehicle Tracking in Real-Time Pipeline.
For each camera in the network, a process gathers frames
and sends them to a GPU process for detection and frame-
level feature extraction. Next, the bounding boxes and corre-
sponding deep features are sent back to the respective camera
process for single camera tracking. Once a single camera track
is concluded, all the frame-level deep features are summarized
into a single representation. Finally, concluded tracks are
collected and their similarity is measured to updates multi-
camera tracks.

details in vehicle images. Authors in [39], [40] incorpo-
rated attention maps by localizing pre-defined key-points to
enhance re-identification in a supervised manner. Typically,
extracted visual representation of vehicles are biased toward
the orientation in which images are captured. To alleviate
this issue, authors of [37] and [38] propose to learn view-
aware aligned features and to disentangle the orientation
from visual features respectively. In addition, [41] proposes
a heterogeneous relational model to extract region-specific
features and incorporate them based on their relation into a
unified representation. To overcome the demand to collect
expensive annotations for learning distinguished vehicle parts,
[34], [35] propose to learn salient regions of vehicles which
encode identity-dependant information, in a self-supervised
manner via the task of residual learning. [33] attempts to
achieve the same goal via the pretext task of image rotation
and degree prediction to encode geometric features along with
the global appearance. Finally, authors in [42] emphasize the
importance of video-based approach as opposed to the image-
based approach for vehicle re-identification and introduced the
VVeRI-901 dataset to contribute to this research direction.

III. METHOD

The overview of our proposed pipeline for real-time multi-
camera vehicle tracking is shown in Figure 1. It consists of
several modules which are explained in the following sections.

A. Camera Process

In our system, we designed a camera-specific process for
each of the n cameras that are in the network so that we
can process each camera in parallel and in real-time. These
processes are responsible for receiving frames from each video
stream and storing them in the frame queues. Upon receiving
a frame it is sent to the GPU process so that vehicles can be
localized and their corresponding frame-level deep appearance
features can be calculated. Subsequently, they are returned
to their respective camera process where the single camera
tracker initiates new tracks or continues tracking previously
tracked vehicles depending on the matching criteria which will
be explained in section III-A1.

1) Single Camera Tracker: As we aim to design a real-time
MCT system, we need to make sure all the involved compo-
nents are fast and efficient while maintaining high accuracy. In
addition, it is paramount that the single camera tracker has a
small number of ID switches as the number of comparisons in
the similarity matrix computation (required for solving multi-
camera tracking) grows quadratically. Therefore, we choose
DeepSort [32] as our single camera tracker. DeepSort is the
successor of SORT [31] which is a very lightweight and simple
multi-object tracking based on the Intersection over Union
(IoU) criteria. To make tracking more robust and resilient to
ID switches, DeepSort incorporates appearance information.
This tracker approximates the dynamics of each target vehicle
with a linear state space model. In the original implementation,
the state space is defined as the following vector:

[u, v, r, h, u̇, v̇, ṙ, ḣ]
T

where u, v, r, and h are the bounding box’s center horizontal
and vertical coordinates, aspect ratio, and height respectively.
In addition, their time derivatives are also included as the state
space variables. However, we modify u, v to be the center
point of the bottom edge of a bounding box as this point
is closer to the surface of the road compared to the center
of the bounding box and results in smaller distortion due to
the missing depth information. DeepSort propagates the state
space distribution to the current time step using a Kalman filter
prediction step and obtains the predicted observation vector
[û, v̂, r̂, ĥ] for a track’s state at current time. However, we
modify this so that whenever there is a matched detection
to a predicted track’s state, we use the information from the

(a) Original (b) Modified

Fig. 2: Impact of replacing the Kalman filter’s predicted state
variables for the current frame with the observations from the
matched detection. This improves the tightness of bounding
boxes around vehicle tracks and quality of extracted features.



4

(a) RITIS Platform (b) AI City Challenge

Fig. 3: Vehicle detection Results on sample frames after
filtering out low-confidence boxes and applying NMS.

matched detection as the track’s current state. Figure 2 shows
the impact of this modification. This modifications is mainly
due to the fact that bounding box locations from the detection
module are generally more accurate compared to predictions
from the tracker as it has assumptions on vehicles motion.
As a vehicle track is concluded, all the extracted frame-level
deep appearance features for its life span are temporally sorted
and sent to a GPU process to be temporally weighted and
summed. Therefore, a single representation vector is obtained
to represent that vehicle track. The concluded track, its ap-
pearance representation, and meta-information are collected
by the multi-camera tracker that is responsible for identifying
multi-camera vehicle tracks.

B. GPU Process

Deep learning technology owes its success to the devel-
opment of Graphical Processing Units (GPU). Almost all
the recent successful Computer Vision methods benefit from
GPUs. Our approach follows this trend and we run our vehi-
cle detection and re-identification models in GPU accessible
processes.

1) Multi-Vehicle Detection: To localize vehicles with high
certainty, CNN-based object detectors are desirable candidates
as they have achieved state-of-the-art results across different
benchmarks and run efficiently on GPU cards. In this work, we
choose Faster R-CNN [13], RetinaNet [12], and EfficientDet
[17] to account for different scenarios, image resolution, and
latency. Given a video frame I , the vehicle detector returns a
list of detections in the form of

[x1, y1, x2, y2, α, β]

where (x1, y1) and (x2, y2) show the top-left and bottom-
right points of the bounding box encompassing a vehicle
while α and β represent the detection confidence and class
label of the detected box, respectively. Note that a minimum
value of confidence score αmin is used to filter out unreliable
detections. In addition, Non-Maximal Suppression (NMS)
ensures that duplicate detections (with high IoU) for a single
vehicle are merged into a single box. However, in extreme
cases of occlusion this may remove the box for the occluded
vehicle. While this may seem to have a negative impact and
interrupts the tracking process, it precludes the extraction
of erroneous features for highly occluded vehicles. Also as
argued in [32], Deep Sort can recover single camera tracks

Self-Supervised Attention Generation

x Variational
Auto-Encoder -

Residual MapInput Image Reconstruction

Fig. 4: The input vehicle image is coarsely reconstructed to
remove the small-scale details. By subtracting the reconstruc-
tion from the input image the residual map is obtained that
captures high-level details such as logos and grill design as
shown above and can serve as an attention map to excite
intermediate feature maps in a CNN.

that are broken up to a certain time window. Figure 3 shows
detection results for frames randomly sampled from RITIS and
AI City challenge data. It is worth mentioning that, on GPU
cards, object detectors have the batch processing capability. At
each time step, the incoming frames from all camera processes
are put into a batch and detection results for all current frames
of different cameras are computed at once.

2) Vehicle Re-Identification: Extracting discriminative deep
features is a critical piece of a multi-camera tracking system.
Small inter-class variation (different vehicles can appear very
similar and share the same make, model and color) and
large intra-class variation (a vehicles appearance can dras-
tically change under different viewpoints) make vehicle re-
identification challenging. Therefore, to increase the discrimi-
nation power, attention-based vehicle re-id models have been
developed to incorporate details from local regions that are
unique to vehicle identities. However, most of these models
increased re-id accuracy at the expense of increased compu-
tational resources and inference time. Therefore, in this work,
we employ the Excited Vehicle Re-identification (EVER) [35],
a state-of-the art vehicle re-identification model and a top
performer in 2020 and 2021 City-scale Multi-camera Vehicle
Re-identification challenge [43], [44], that benefits from the
self-supervised attention generation mechanism introduced in
[34] without adding any overhead to the inference time. During
training, intermediate layers of EVER are excited via the
residual maps generated by a conditional variational autoen-
coder network in a self-supervised manner as proposed in [34].
The residual maps serve as pseudo-saliency maps highlighting
small-scale details in vehicle images. Figure 4 shows an
example of how such residual maps are generated. As training
progresses, the intensity of excitation γ reduces as a cosine
function of training epoch, i.e. γ(m) = 0.5×

(
1 + cos(πmM )

)
where m, and M are current epoch and total number of train-
ing epochs. As a result, once training is finished, the inference
only involves a single forward pass of a ResNet IBN-a [45]
which is quite efficient and fast, a desirable property for a
real-time multi-camera tracking system. Note that we use the
ResNet IBN-a as the backbone architecture for EVER model
since it is shown to be a superior candidate for the task of
re-identification [46].
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Fig. 5: A Vehicle track images ordered in time from left to
right.

In contrast to the typical task of vehicle re-identification
which aims to compare a query image against gallery im-
ages, in a real-world multi-camera tracking scenario, the
task involves comparing a query track against gallery tracks.
This requires computing a representation that summarizes the
extracted frame-level features of a vehicle in an effective
manner. Figure 5 shows frames of a track and how they
change as the vehicle passes by the camera. It shows that
simply averaging all the extracted frame-level features can
potentially ignore those frame-level representations that carry
discriminative information on vehicle identity. For instance,
when a vehicle is far from a camera, only large-scale in-
formation can be captured compared to the time it is close
to camera. Since vehicle’s displacement is smaller relative to
when it is closer to the camera, most of the extracted frame-
level features for the vehicle track only contain large-scale
information and small-scale information that is critical for
successful re-id is ignored. Therefore, it is important to learn
how to effectively fuse frame-level information into a single
representation also know as video-based re-identification. To
solve this issue, our multi-camera tracking system is equipped
with a Temporally Weighted Deep Feature Extractor module
that is inspired by the work of [47] to compute a single
representation vector for the entire length of a vehicle track.
Figure 6 shows the mechanism of extracting frame-level deep
features and how they are temporally weighted and averaged
to obtain a single representation for the entire life span of
a vehicle track. In addition, this summarization significantly
simplifies the subsequent feature matching to obtain multi-
camera vehicle tracks and is less memory demanding.

To train EVER, we adopt both Cross Entropy and Triplet
[48] loss functions which is a common approach to train re-
identification models. To make a training batch, we randomly
sample K vehicle tracks with unique identities out of all
the training tracks and for each selected track L frames are
randomly selected and temporally ordered, i.e. batch size is
K ∗ L. In addition, all the selected frames are resized to a
fixed width W and height H . As a result the computed batch
is a tensor of shape (K∗L)∗3∗H ∗W . Here we use the batch-
hard sampling method for triplet loss formulated as below:

Lt =
1

B

B∑
i=1

∑
a∈bi

[
γ + max

p∈P(a)
||fa − fp||2 − min

n∈N (a)
||fa − fn||2

]
+

(1)
In Eq. 1, B, bi, a, γ, P(a) and N (a) are the total number of
batches, ith batch, anchor sample, distance margin threshold,
positive and negative sample sets corresponding to a given
anchor respectively. Moreover, fa, fp, fn are the extracted
features for anchor, positive and negative samples. In addition,
the Cross entropy loss with label smoothing technique [49]
is used to alleviate the issue of over-fitting. Note that to
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Fig. 6: Computing vehicle track representation. In Frame-level
Deep Feature Extraction stage, 2048-dimensional features are
computed in the GPU process. Once a single camera track of
length L is concluded, temporally-ordered frame-level features
are sent to another GPU process to be weighted and averaged.
In this step, all the L frame-level features are stacked and
passed through two convolutional layers with non-linearities
to obtain L scalar values corresponding to L frames. Finally,
the L frame-level features are weighted by the softmax of L
scalar values and then summed to output the 2048-dimensional
trajectory representation f .

(a) AI City Challenge camera map

(b) Sample RITIS system camera map

Fig. 7: Traffic cameras topology can help us reduce search to
adjacent cameras only.

effectively apply both cross entropy and triplet objectives to
the extracted features, Batch Normalization Neck (BNNECK)
[50] is employed. The Cross entropy loss is calculated as
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follows:

Lc = − 1

N

N∑
i=1

C∑
j=1

yij log ŷij (2)

Where ŷij = e
(WT

j fi+bj)(∑C
k=1 e

WT
k

fi+bk
) is the computed logit corre-

sponding to class j for the extracted feature fi of the ith

training sample after applying the softmax layer. Furthermore,
Wj , bj are the classifier’s weight vector and bias associated
with jth class respectively, and N and C represent the total
number of samples and classes in the training dataset. Since
we use label smoothing, yij = 1 − C−1

C ε if j = c, otherwise
yij = ε

C where c is the true label of ith sample and ε ∈ [0, 1]
is a hyper-parameter.

Camera Bias Mitigation: Another issue in multi-camera
re-identification is that the orientation and background bias
usually infiltrate to the computed vehicle embeddings from
each camera [51] due to the limited variability. To alleviate
this problem, once the model is trained, similar to [52], first
we average all the vehicle representations {f ci }Ni=1 captured
in a particular camera c, resulting in a camera embedding
gc =

∑N
i=1 f

c
i

N . As many representations participate in this aver-
aging, identity-dependent information can be suppressed while
camera-dependent information is retained. Therefore, we can
reduce the impact of the camera background and orientation
bias on the re-identification and cross-camera comparison by
subtracting a portion λ of camera embedding gc from vehicle
representations of that camera:

fi = f ci − λgc (3)

where λ is a hyper-parameter. Finally, we employ the re-
ranking method of [53], a common post-processing technique
to enhance the distance matrix and re-identification results
concurrently.

C. Multi-Camera Tracker

The multi-camera tracker is responsible for collecting the
terminated single camera tracks from all the cameras and
associate them into multi-camera tracks. To do so, this module
has distinct sub-modules that are described below.

1) Single Camera Track Collection: As each single camera
is processed in parallel and concluded single camera tracks
are obtained independently, a supervisory module is required
to collect the concluded tracks from all the camera processes at
designated time steps depending on the query frequency in the
multi-camera tracking system. Afterwards, the collected single
camera tracks and existing multi-camera tracks are passed on
to the next stage to compute pairwise similarities.

2) Track Similarity Matrix Calculation: To create associ-
ations among the different vehicle tracks, we need to mea-
sure pairwise similarity of tracks from the perspectives of
extracted deep features and spatio-temporal information. The
re-identification module is trained and expected to extract
embeddings to be similar using either Cosine or Euclidean
distance for the same identities while embeddings correspond-
ing to different identities to be dissimilar. However, due
to the limited variability of vehicle types and models, lack

𝑡𝑟!
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Fig. 8: In case tr1 and tr2 with t2s > t1e represent the same
identity at neighboring cameras, the following relationships
should be valid: d(l1s , l

2
s) ≥ d(l1e , l

2
s), and d(l2e , l

1
e) ≥ d(l2s , l

1
e).

These criteria ensure that the direction of travel across cameras
stay consistent going forward and backward in time.

of highly discriminating features and inherent camera view
and orientation bias in embeddings, mere consideration of
embedding similarity may result in erroneous multi-camera
tracks. Therefore, spatio-temporal information is a valuable
source of information needed to refine the similarity results.
To this end, the following traffic rules are considered for the
incorporation of spatio-temporal information and measuring
the similarity of each pair of tracks:

1- Tracks captured through a same camera share similarities
in orientation, shape and background that can negatively
impact the re-identification results by severely reducing
the inter-class distance which may lead to failure cases.
Therefore, single camera tracks from the same camera
cannot be matched together. Given the recent improve-
ments in the area of Multi-object single camera tracking
the chance of occurring ID switches has significantly
reduced. Note that there is a chance that a passing vehicle
might get back to the scene after a while. This can
be fixed by setting a minimum time limit to consider
single camera tracks from the same camera. However,
as this adds additional hyper-parameters to the system,
for the sake of simplicity we assume that the chance of
reappearance is zero in this work. This is a reasonable
assumption as the multi-camera tracks that are inactive
for a while are flushed out of the system.

2- In the event that the two tracks are captured by two non-
overlapping cameras, their occurrence time should not
overlap. Otherwise, their similarity should be set to zero.

3- Vehicle’s travel velocity should be within a reasonable
range that can be determined for each particular scenario.
In our implementation, similar to [6] we considered
track similarity to be a quadratic function of speed, i.e.
simv = max(0, 4v̄(vmax − v̄)/vmax) where vmax and
v̄ = d(l2s , l

1
e)/(t

2
s−t1e) are the maximum possible and the

average travel speeds between the two locations where
tracks tr1 and tr2 are observed. Start and end time-
location of tr1 are (t1s, l

1
s) and (t1e, l

1
e). Similarly, (t2s, l

2
s)

and (t2e, l
2
e) represent the start and end time-location of

tr2. Here we assume that t2s > t1e. Also d(., .) represents
the physical distance between the two points using their
latitude and longitude. To obtain latitude and longitude of
points in the image domain, extrinsic camera calibration
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can be performed using the Perspective-n-Point (PnP)
technique and providing a set of corresponding points
GPS and 2D pixel locations. This enables us to compute
the homography matrix and its inverse to project points
from real-world to 2D pixel coordinates and vice versa.

4- Given the topology of traffic cameras, we can further
reduce the search to only tracks that are observed in
adjacent cameras. This constraint significantly reduces
the number of comparisons needed for association of
tracks while improving the accuracy. Figure 7 shows
that the topology of cameras can be a valuable source
of information which is readily available as latitude and
longitude of traffic cameras are typically provided.

5- Since we reduce the search to only neighboring cameras
in traffic rule 4 and assuming relatively straight roads, if
two different tracks, tr1 and tr2 as shown in Figure 8,
represent the same vehicle identity, their travel direction
should stay consistent in adjacent cameras both going
forward and backward in time. Assuming t2s > t1e and
they represent the same vehicle identity, the following
should hold true:

d(l1s , l
2
s) ≥ d(l1e , l

2
s), d(l2e , l

1
e) ≥ d(l2s , l

1
e) (4)

Based on the above-mentioned traffic rules, the pairwise
similarity of tracks tri and trj can be computed as follows:

sim(i, j) =

{
(1− ||fi−fj ||22 )simv Traffic rules are satisfied
0 otherwise

(5)
Note that the deep visual embeddings fi and fj are normalized
i.e. ||fi||2 = 1 and ||fj ||2 = 1. This formulation allows us to
compute the similarity matrix for all the pairs of tracks that
are being considered for association. Note that, all the tracks
are considered as both query and gallery tracks. Therefore,
the resulting similarity matrix is symmetrical and all diagonal
elements are set to zero.

3) Hierarchical Clustering: Since the number of true iden-
tities is not known beforehand, we adopt a hierarchical cluster-
ing algorithm to perform this task. Once the similarity matrix
is computed we need to identify those tracks representing same
vehicle identities. First, we enforce that a minimum similarity
value to be met in order for tracks to represent identities.
Therefore, depending on the dataset, we apply a minimum
threshold τmin to zero out similarity values smaller than τmin.
Afterwards, we use hierarchical clustering algorithm which
initiates each track as its own cluster and in an iterative
manner merges the clusters with highest similarity. Note that
the first traffic rule asserts that no more than one single camera
track from the same camera can represent a vehicle identity.
Therefore, once a track, e.g. tri from camera i, is merged
with another track, e.g. trj from camera j, then we need to
make sure that tri cannot be merged with any other track
from camera j and track trj cannot be merged with any other
track from camera i. This operation helps us to maintain the
transitivity property among all merged tracks.

IV. EXPERIMENTAL RESULTS AND IMPLEMENTATION
DETAILS

In this section we evaluate our proposed real-time multi-
camera tracking system on the traffic data streaming on the
RITIS platform as well as the 2021 AI City challenge multi-
camera tracking dataset. Details of each type of data, the
implementation details, justification for design choices, and
discussions are provided accordingly.

A. RITIS Platform Streaming Data

1) Dataset: The RITIS system consolidates and rebroad-
casts traffic data streams from various local municipalities
throughout the United States on its platform. The streaming
data provides typical metadata such as resolution, frame rate,
and GPS coordinate of the camera. Sample video stills are
shown in Figure 9. This data has hallmarks of true operational
data including low resolution (usually 320x240), low frame
rate (usually 10 fps or lower), and motion and compression
artifacts. A visual inspection shows that the distribution of
this data significantly differs from that of other curated traf-
fic datasets. For optimal performance on detection, i.e. the
most fundamental task in our proposed multi-camera tracking
pipeline, it is important to leverage all the available labeled
data while accounting for the domain gap. Therefore, we
employ labeled traffic datasets discussed in IV-A1 to perform
domain adaptation and train our vehicle detection model.

Labeled Data: Two external labeled datasets are used for
training the vehicle detector which will be referred to as our
labeled source data.

• UA-DETRAC [18] dataset contains over ten hours of
video from twenty-four different traffic cameras in Bei-
jing and Tianjian, China. The videos were recorded
at twenty-five frames per second, at the resolution of
960x540, and under various lighting conditions. Of the
collected data, 140k frames were annotated which re-
sulted in 1.21 million bounding boxes for 8250 vehicles.

• CityCam [54] dataset contains recordings from 212 traf-
fic cameras in the United States, with a resolution of
352x240 and a frame rate of 1 frame/per second. A total
of 60k frames and 900k objects were annotated.

Unlabeled Data: Instead of operating on continuously
streaming data, we collected a dataset which we refer to as our
unlabeled target data. This dataset contains one-minute video
recordings captured by 62 different cameras in the Washington
D.C - Maryland - Virginia area. The recordings were captured
multiple times during a day. Since there are no annotations
available for this dataset, to evaluate our algorithms on target
data, we curated a small detection validation set containing
1408 images from 62 cameras, with an approximately equal
number of images per camera. From these images, 11,147
vehicles were labeled as ground truth. The details of labelling
is provided in Table I. Additionally for the tracking task, nine
1-minutes videos were labeled in their entirety as our single
camera tracking validation set; the summary of labeled boxes
and tracks is presented in Table II.
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(a) (b) (c) (d)

Fig. 9: Sample frames of traffic data obtained from RITIS platform. The low resolution, motion and compression artifacts are
hallmarks of the streaming data on this platform.

TABLE I: Detection validation set statistics
Car Bus Truck Van SUV Total

Boxes 9659 74 283 655 476 11147

TABLE II: Single camera tracking validation set statistics
Car Bus Truck Van SUV Total

Boxes 22296 555 1487 2375 518 27231
Tracks 157 3 11 11 5 187

2) Multi-Vehicle Detection: For this data, we adopt Reti-
naNet [12] and Faster R-CNN [13] trained on the COCO
dataset. As pointed out before, the characteristics of RITIS
streaming data are quite different compared to other publicly
available benchmark datasets. Therefore, there is a domain
shift which can hinder the performance. Moreover, there are
no annotations available for this dataset. However, annotations
such as bounding box information, transfer across domains.
Hence unsupervised domain adaptation from our labeled data
to unlabeled data, can help us to compensate for this gap
and prepare training data for the vehicle detection module as
discussed in the following section.

Domain Adaptation: A typical procedure to leverage la-
beled source data and a pre-trained detector is to fine-tune
on the labeled source data directly and test on the target
data. However, domain shift can deteriorate performance. For
instance, as shown in Table III, when off-the-shelf RetinaNet
and Faster R-CNN models are applied to our validation set
as baseline models, the detection mAP is 62.24% and 64.8%
respectively. However, once these detectors are fine-tuned on
UA-DETRAC dataset, the performance drops to 36.21% and
37.86% correspondingly, showing the gap between the two
domains. To leverage all available data, we use CycleGAN
[55] to perform unpaired image-to-image translation to transfer
domain information from the target data into the UA-DETRAC

TABLE III: The results of training the detector. The data is
fine-tuned on the specified dataset and tested on the operational
traffic camera data. “All” refers to training on the combination
of the best performing domain-adapted UA-DETRAC dataset
and the CityCam Dataset.

Dataset

Model Baseline CityCam UA-DETRAC DA UA-DETRAC All
mAP(%) mAP(%) mAP(%) mAP(%) mAP(%)

FasterRCNN-101 64.8 73.92 37.86 61.49 77.83
RetinaNet-101 62.24 69.95 36.21 60.62 75.84

labeled source data while maintaining the inherent structure
and labels of the source data. Note that no domain adaptation
is needed for the CityCam dataset as fine-tuning directly
improved detection results on the held out validation set over
the baseline as can be seen in Table III. After we learn the
mapping, we transfer the UA-DETRAC dataset to the domain
of target data and reference it as DA UA-DETRAC. Figure 10
demonstrates a sample image of UA-DETRAC dataset and its
progression during the course of domain adaptation process.
To measure the success of domain adaptation and control how
much style was transferred, we use the detection accuracy as
a proxy task. To do so, after every 10Kth iteration we record
the checkpoint for the mapping function, train the object
detector on that particular mapped UA-DETRAC dataset, and
calculate the accuracy of detection. The mAP scores after each
10kth iteration are shown in Figure 11. We then choose to
use the domain-adapted datasets corresponding to the highest
performance. Table III shows that domain adaptation leads to
a nearly 24 point increase in detection accuracy once switched
from UA-DETRAC to DA UA-DETRAC.

After we obtain DA UA-DETRAC, we combine this with
the Citycam dataset to increase the size of the training set and
get the best performance. Next we fine-tune both RetinaNet101
and Faster R-CNN101 models on this combined data. Note
that to train object detectors, both the stem and the first
residual stage of the networks are frozen while the rest of the
networks are trained. Stochastic Gradient Descent optimizer
with learning rate of 0.0025 and momentum of 0.9 is used
for 20K iterations. Table III reports that domain adaptation of
DA UA-DETRAC along with combination with the CityCam
dataset help to increase the detection accuracy approximately
13% from the baseline models. RetinaNet101 and Faster R-
CNN101, with a single NVIDIA RTX 2080 Ti GPU card, need
68 and 69 milliseconds on average to process frames from
RITIS data respectively. As Faster R-CNN101 achieved higher
mAP on our validation set, we choose it to be our detection
model in the multi-camera vehicle tracking. This helps us to
meet the real-time requirements of 100 milliseconds (10 fps).

3) Single Camera Tracking: Here we use standard evalua-
tion metrics, i.e. Multiple Object Tracking Accuracy (MOTA)
and IDF 1 scores, as described in [56] to evaluate the single
camera tracking performance. MOTA is a function of the
number of false negatives, false positives, fragmentations,
and true detections. MOTA accounts for the frequency of
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(a) Original image (b) DA after 10k iterations (c) DA after 50k iterations (d) DA after 100k iterations

Fig. 10: The domain transfer applied to the UA-DETRAC. (a) shows the original image, while figures (b)-(d) shows the extent
of domain adaptation during the course of training.
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62

m
AP

FasterRCNN
RetinaNet

Fig. 11: Detection performance vs number of iterations of
domain adaptation.

mismatches; however, it is important to consider how long
these errors occur, which is enumerated by the IDF 1 score
[56]. As discussed in section III-A1, we use a modified version
of DeepSort to associate detected objects in a single camera.
We use our tracking validation set with statistics presented in
Table II to determine the best set of hyper-parameters required
by this tracker. We use the Euclidean distance measure for
similarity and set our matching threshold to 0.3, below which
tracks are candidates for matching. The results, as well as the
desired direction of scores for each metric, are shown in table
IV.

TABLE IV: Single Camera Tracking results on our held out
validation set

IDP(↑) IDR(↑) IDF1(↑) MOTA (↑)
Overall 85.5 74.5 79.7 68.7

4) Deep Feature Extraction: For the purpose of extract-
ing frame-level deep features for the RITIS data, we use
ResNet50 IBN-a as the backbone architecture of EVER
model. In contrast to the vehicle detection task which mainly
requires large-scale information to localize vehicles, vehicle
re-identification has to deal with small-scale and subtle de-
tails of vehicles. Therefore, employing domain adaptation for
publicly available datasets to be transferred to the RITIS data
might degrade microscopic features and negatively impact the
re-identification process. Based on this, we decided to create
a vehicle re-identification dataset directly from RITIS data. In
total we collected 75, 685 images (858 tracks) of 475 vehicle

TABLE V: Evaluation results of the trained EVER model on
our RITIS validation set for the task of track-based vehicle
re-identification.

Model Settings mAP(%)(↑) CMC(%)(↑)
@1 @5

EVER-trained ResNet50 IBN-a 35.0 32.7 44.0
+ Horizontal Flip Augmentation 37.4 33.5 44.2

+ Re-ranking 38.1 34.0 44.1
+ Camera Bias Mitigation 38.5 34.6 44.3

identities across 13 cameras. 400 of these vehicle identities
which form 721 vehicle tracks have been assigned for training
and the rest and reserved for validation. Afterwards, we train
the video-based version of EVER model as discussed in
section III-B2 and by the following hyper-parameters. We set
the track temporal length to L = 5. Also, the number of
unique identities within each mini batch is set to K = 16.
Since the resolution of videos in this domain is relatively low,
e.g. 320 × 240, vehicles incorporate fewer pixels. Therefore,
we resized vehicle crops to height and width H = 64, and
W = 64 as opposed to 224 × 224 or 256 × 256 which
are typically used. This in turn contributes to reducing the
inference time. In fact, this model can compute frame-level
deep features of 128 vehicle images in only 6.51 milliseconds
on a NVIDIA RTX 2080 Ti GPU card. Consequently, we
perform horizontal-flip test-time augmentation technique, in
which we also compute the representation of the horizontally
flipped tensor of a track and average it with its original
representation to obtain a more robust embedding. Table V
presents the track-based vehicle re-identification results on
the validation set. Based on the observed performance, it can
be seen that conducting re-identification in low resolution
images with motion and compression artifacts is challenging.
Table V shows the impactful roles of test-time horizontal flip
augmentation and camera bias mitigation.

5) Multi-Camera Tracking: Once all the required modules
in our proposed multi-camera vehicle tracking system are
prepared, we start tracking vehicle identities in the RITIS
platform over the set of cameras that are of interest. Since
RITIS gathers real-time traffic data streams, all the multi-
camera processing needs to be completed in real-time to
maintain time parity with streaming data and enable the end-
user to make real-time decisions based on what is happening
at the moment as waiting for a few seconds, minutes, and
hours might not be an option. Our proposed method has been
implemented on this platform as a prototype for multi-camera
tracking and it is shown to be able to track vehicle identities
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Fig. 12: Screen shot of real-time multi-camera vehicle tracking
capability on three sampled neighboring cameras on RITIS
platform.

in real-time. Figure 12 shows a screen shot of the interface for
this prototype. The highlighted track has been re-identified in
the three cameras.

B. AI City Challenge

1) Dataset: This multi-camera vehicle tracking dataset,
namely CityFlow, contains 3.5 hours of traffic videos collected
from 46 cameras spanning 16 intersections in a mid-sized city
in Iowa, United States. The videos resolution are at least 960p
with 10 frames per second. In addition, an online evaluation
server is provided to rank participating teams based on the
IDF 1 tracking metric which is the ratio of correctly identified
tracks over the average number of ground-truth and computed
tracks. In another words, IDF 1 balances identification preci-
sion and recall via computing their harmonic mean.

2) Multi-Vehicle Detection: For this dataset, we choose
to use off-the-shelf object detector trained on COCO dataset
as this data does not contain properties such as video tear
or compression artifacts. RetinaNet, Faster R-CNN, Mask R-
CNN and EfficientDet object detectors are considered. Table
VI presents the average inference time (On a single NVIDIA
RTX 2080 GPU card using batch size of 1) of these detectors
on the high resolution AI City Challenge dataset along with
their respective mean Average Precision (mAP) on the COCO
2017 benchmark. Among these detectors, EfficientDet D3 is a
viable choice as it has the least inference time, i.e. suitable for
real-time multi-camera tracking, while beating the detection
accuracy of RetinaNet, Fatser R-CNN and Mask R-CNN. In
addition, we set the object detector to only retain detections
of only ”car”, ”bus”, and ”truck” types with a minimum of
0.35 detection confidence. NMS with IOU threshold of 0.85
is applied to the detection results.

3) Deep Feature Extraction: To extract the deep visual
features for this dataset, we use the ResNet101 IBN-a as the
backbone architecture of the EVER model. To train this model,
we use CityFlow-ReID and VehicleX [57] that are provided

TABLE VI: Inference time-Detection Accuracy comparison
of popular object detection models. mAP is measured on
the COCO 2017 benchmark. Inference time, represents the
average time it takes for a single NVIDIA RTX 2080 Ti GPU
card to process high resolution video frames of 2021 AI City
Challenge with batch size of 1.

model Backbone mAP(%)(↑) Inference
time(ms)(↓)

RetinaNet ResNet101 40.4 66

Faster R-CNN ResNet101 42.0 68
ResNext101 43.0 110

Mask R-CNN ResNet101 42.9 69
ResNext101 44.3 113

EfficientDet
D3 47.2 41
D4 49.7 66
D5 51.5 104

for the multi-camera vehicle re-identification task. CityFlow-
ReID contains 85, 058 images from 880 vehicle identities.
Out of these images, 52, 717 (2173 tracks) from 440 vehicle
identities form the training set and the rest are reserved for
testing. We randomly sample 100 identities from the training
set as the validation set which gives rise to 11349 images
(469 tracks). VehicleX is a synthetic vehicle re-identification
dataset which has over 190, 000 images (14663 tracks) of 1300
vehicle identities which is only provided for training purposes.
However as discussed in [52], [58], there is a significant
domain shift between this synthetic data and the real data used
for evaluation. Therefore, similar to our approach for vehicle
detection on the RITIS data, we used CycleGAN to reduce
this domain gap and learn a generator function to translate
synthetic images to real data domain. After this step, we
gather all the real and domain adapted synthetic data in our
training set to train EVER model and extract discriminative
deep representations of a vehicle track as described in III-B2
section. Note that for this dataset, we set the number of distinct
identities in each batch K = 16, the track length L = 5, and
height and width of images to H = 256,W = 256. After
training, this model computes frame-level deep visual features
to be used by single camera tracker as well as the track level
representations to be used by the multi-camera tracker. Note
that during inference, the forward pass of the ResNet101 IBN-
a for the batch size of 128 takes 13.09 milliseconds on
average. This allows us to meet the real-time requirement of
100 milliseconds (10 fps) for traffic videos while performing
horizontal flip test-time augmentation technique. Table VII
reports the track-based vehicle re-identification performance
on our validation set. It is shown that a model ensemble
can significantly contribute to the performance [52]. However,
having an ensemble is a significant overhead that is compu-
tationally prohibitive for the real-time applications. Here we
merely want to show the performance boost by considering
3 different models namely, ResNet101 IBN-a trained on real
and domain adapted synthetic data, ResNet101 IBN-a only
trained on real data, and a ResNet101 train on real and domain
adapted synthetic data. While this improves the performance,it
requires 3 times of the regular inference time or computational
resources that is not possible in a real-time large-scale multi-
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TABLE VII: Evaluation result of the trained EVER model
on our validation set for the task of track-based vehicle re-
identification.

Model Settings mAP(%)(↑) CMC(%)(↑)
@1 @5

EVER-trained ResNet101 IBN-a 54.2 61.8 80.5
+ Horizontal Flip Augmentation 54.6 62.2 80.7

+ Re-ranking 56.6 62.9 81.7
+ Camera Bias Mitigation 56.8 64.0 81.3

+ Model Ensemble 63.5 69.4 85.0

TABLE VIII: Our proposed real-time multi-camera tracking
results on the test set of 2021 AI City Challenge.

Settings IDP (↑) IDR(↑) IDF 1(↑)
Baseline 0.5207 0.4469 0.4810

+ Traffic Rule #4 0.5572 0.6196 0.5867
+ Traffic Rule #5 0.6608 0.6890 0.6746

+ Hyper-parameter Tuning 0.7088 0.7292 0.7189

camera tracking system unless expensive computational units
are available. In addition, we note that camera bias mitigation
technique increased CMC@1 metric by 1.1%. Improving
CMC@1 is directly tied with the performance of MCT since in
hierarchical clustering performed by the multi-camera tracker,
in each iteration the pair with highest matching score, i.e., the
first match, is the basis for association.

4) Multi-Camera Tracking: After putting all the modules
in our proposed real-time multi-camera tracking system, we
evaluate our approach on the test set of 2021 NVIDIA AI
City Multi-camera Tracking challenge and compare it against
submissions to the public leaderboard. Note that submissions
are ranked for this challenge only based on IDF 1 track-
ing score without any consideration for processing time and
computational complexity. In addition, the evaluation server
provides Identification Precision (IDP) and Identification Re-
call (IDR) evaluation metrics. The test set is composed of 6
simultaneously recorded videos of resolution 1280x960 from
6 different cameras as shown in Figure 7a. The length of each
video is 3 minutes and 20 seconds. Table VIII summarizes our
performance on this dataset and shows the impact of the traffic
rules we considered during similarity matrix computation. The
baseline model refers to our proposed system without the
consideration of traffic rules #4 & #5. From Table VIII
we can appreciate the impact of effective incorporation of
spatio-temporal information on the refinement of multi-camera
tracking results. Most notably, by reducing the search only to
neighboring cameras, i.e. Traffic Rule #4, there is a significant
boost in the IDR metric showing that capability of recalling the
multi-camera tracks is very well improved. Moreover, It can
be seen that enforcing the consistency in the travel direction
(Traffic Rule #5) is a valuable spatio-temporal cue to filter
out erroneous results. Finally, in the public leaderboard of
the challenge our method with the IDF 1 score of 0.7189
is ranked 5th out of 23 participating teams without any
considerations for the computational efficiency, inference time,
and entering additional spatio-temporal information beyond
what is provided by the challenge organizers. For instance, [3]
shows that introducing crossroad zones, i.e. the connectivity
of the different road zones in one camera to the neighboring
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Fig. 13: Sample of two Multi Camera tracks generated by our
method for the AI City challenge test data.

cameras, search for multi-camera tracks can be extremely
refined.

V. CONCLUSION

In this work, we highlighted the importance of designing a
scalable and real-time multi-camera vehicle tracking system
that can provide precise and timely information for trans-
portation applications. Moreover, we shed light on the prac-
tical issues involved in achieving this goal and subsequently
propose our multi-camera tracking system to address these
issues and can process camera feeds in parallel and identify
vehicle identities over a network of traffic cameras in real-
time. Thanks to its effectiveness, it has been adopted in the
Regional Integrated Transportation Information platform to
provide real-time understanding of the status of traffic and
identify sources of traffic congestion. In addition, we have
participated in the 2021 NVIDIA AI City city-scale multi-
camera tracking challenge and our model is ranked among the
top five contestants without any consideration of processing
time and computational complexity of the submissions.
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